These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Viscoelasticity of the trachea and its effects on flow limitation.
    Author: Aljuri N, Venegas JG, Freitag L.
    Journal: J Appl Physiol (1985); 2006 Feb; 100(2):384-9. PubMed ID: 16239614.
    Abstract:
    To test the hypothesis that peak expiratory flow is determined by the wave-speed-limiting mechanism, we studied the time dependency of the trachea and its effects on flow limitation. For this purpose, we assessed the relationship between transmural pressure and cross-sectional area [the tube law (TL)] of six excised human tracheae under controlled conditions of static (no flow) and forced expiratory flow. We found that TLs of isolated human tracheae followed quite well the mathematical representation proposed by Shapiro (Shapiro AH. J Biomech Eng 99: 126-147, 1977) for elastic tubes. Furthermore, we found that the TL measured at the onset of forced expiratory flow was significantly stiffer than the static TL. As a result, the stiffer TL measured at the onset of forced expiratory flow predicted theoretical maximal expiratory flows far greater than those predicted by the more compliant static TL, which in all cases studied failed to explain peak expiratory flows measured at the onset of forced expiration. We conclude that the observed viscoelasticity of the tracheal walls can account for the measured differences between maximal and "supramaximal" expiratory flows seen at the onset of forced expiration.
    [Abstract] [Full Text] [Related] [New Search]