These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis, characterization, and x-ray crystal structures of cyclam derivatives. 8. Thermodynamic and kinetic appraisal of lead(II) chelation by octadentate carbamoyl-armed macrocycles.
    Author: Cuenot F, Meyer M, Espinosa E, Guilard R.
    Journal: Inorg Chem; 2005 Oct 31; 44(22):7895-910. PubMed ID: 16241139.
    Abstract:
    En route toward the development of hybrid organic-inorganic extracting materials incorporating lead-selective chelators and their implementation in water purification processes, the lead(II) binding properties of three N-carbamoylmethyl-substituted 1,4,8,11-tetraazacyclotetradecanes (cyclams) have been fully investigated by spectroscopic (IR, UV-vis, MALDI-TOF MS, (1)H and (13)C NMR), X-ray crystallographic, potentiometric, and kinetic methods. Solution NMR studies revealed that the Pb(2+) ion is entrapped in a molecular cage constituted by the four macrocyclic nitrogen and four amidic oxygen atoms. Protonation and lead binding constants determined in aqueous solution were shown to be linearly dependent, so that all three derivatives possess a similar affinity at any pH value. Thermodynamic and kinetic parameters revealed the crucial role played by the intramolecular hydrogen bonds also evidenced in the crystal structure of the tetraacetamide derivative L(1), which involve the lone pair of each macrocyclic tertiary amine and one amidic hydrogen atom belonging to the appended arm. In contrast to L(1), the absence of such intramolecular interactions for N-(dimethyl)carbamoylmethyl- and N-(diethyl)carbamoylmethyl-substituted cyclams (L(2) and L(3), respectively) accounts for the 2-3 orders of magnitude enhancement of their proton and lead binding affinities. Stopped-flow kinetic measurements enabled unraveling the formation process of the three lead(II) complexes that proceeds in a single rate-limiting step according to the Eigen-Winkler mechanism, while the apparent rate constants were found to increase in the order L(3) < L(2) << L(1) as a consequence of the more acidic character of L(1). A common proton-assisted dissociation mechanism has been found for the three lead(II) complexes, which involves the rapid formation of a protonated, six-coordinate intermediate followed by either a unimolecular decomposition or a bimolecular attack of a second hydronium ion.
    [Abstract] [Full Text] [Related] [New Search]