These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pattern-forming instabilities in nematic liquid crystals under oscillatory Couette flow.
    Author: Tarasov OS, Krekhov AP, Kramer L.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031709. PubMed ID: 16241462.
    Abstract:
    We consider instabilities, either homogeneous or periodic in space, which develop in a nematic liquid crystal layer under rectilinear oscillatory Couette flow for planar surface alignment of the director perpendicular to the flow plane. On the basis of a numerical and analytical linear stability analysis we determine the critical amplitude of the oscillatory flow, the wave number, and the symmetry of the destabilizing mode and present a comprehensive phase diagram of the flow instabilities. In particular it is found that by varying the frequency of the Couette flow the instability changes its temporal symmetry. This transition is shown to be related to the inertia effects of the nematic fluid, which become more important with increasing flow frequency. We also show that an electric field applied perpendicularly to the nematic layer can induce an exchange of instabilities with different spatial and temporal symmetries. The theoretical results are compared with experiments, when available.
    [Abstract] [Full Text] [Related] [New Search]