These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Serum complement factor I decreases Staphylococcus aureus phagocytosis.
    Author: Cunnion KM, Buescher ES, Hair PS.
    Journal: J Lab Clin Med; 2005 Nov; 146(5):279-86. PubMed ID: 16242527.
    Abstract:
    Complement-mediated opsonization of Staphylococcus aureus is a critical host defense in animal models. Specifically, C3b and CD35 play important roles in effective opsonophagocytosis of S. aureus. We have shown that complement control protein factor I mediates cleavage of the complement opsonin C3b bound to the S. aureus surface. In this study, we examined the physiologic relevance of this observation by determining whether factor I-mediated cleavage of S. aureus-bound C3b decreased phagocytosis of S. aureus by neutrophils. Compared with controls, anti-factor I antibody inhibited C3b-cleavage on the S. aureus surface by >83% (as measured by iC3b generation) and increased phagocytosis of S. aureus by >100%. Treatment of C3b-coated S. aureus with factor I increased generation of iC3b (75%), decreased the total amount of C3-fragments bound to the S. aureus surface (58%), and decreased the number of bacteria phagocytosed (40%). Testing specifically for C3-fragments shed from the S. aureus surface, we found that factor I increased shedding (43%). Notably, these factor I-mediated effects were of the same magnitude regardless of whether factor H, a known cofactor for factor I, was present. These findings indicate that S. aureus benefits from, and possibly manipulates, the normally host-protective activity of factor I cleavage of C3b, which results in bacterial escape from complement-mediated opsonophagocytosis. Because escaping opsonophagocytosis-mediated destruction is a necessary mechanism for bacterial survival resulting in human disease, preventing cleavage of C3b on the S. aureus surface, and thereby enhancing opsonophagocytosis, is a promising potential target for therapeutic intervention.
    [Abstract] [Full Text] [Related] [New Search]