These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Studies on construction of artificial mutants of Cucumber mosaic virus satellite RNA and their biological activity]. Author: Jin B, Chen JS, Zhang HR. Journal: Wei Sheng Wu Xue Bao; 2005 Aug; 45(4):610-3. PubMed ID: 16245882. Abstract: Based on the full length cDNA clone of a Cucumber mosaic virus satellite RNA, which was 369nt in size, artificial mutants were developed by the method of error-prone PCR and DNA shuffling. The new satellite cDNAs were transcribed in vitro into ssRNA and pseudo-recombined with a helper Cucumber mosaic virus, which contains no satellite RNA. Sequence analysis showed that A to T/G or G to A replacement all the four mutants, named MS1, MS5, MS6 and MS11 respectively, and there is no C to G or G to C replacement, but amongst, only the mutants MS11 could replicated when recombined with the helper virus strain. No satellite RNA could be detected by RT-PCR amplification and double-stranded RNA analysis for those pseudo-recombination constitution of Cucumber mosaic virus strain with mutants MS1, MS5 and MS6.Sequence homological comparison showed that the single replacement of mutants MS1, MS5 and MS6 occurred in the highly conservative regions and the T to A replacement of mutant MS11 was located in the normal-variation region. This is the first artificial mutation of satellite RNA of plant RNA viruses. The results indicated that single base in the region of satellite RNA maybe important to maintaining the biological activity of satellite RNA for its replication and stability. The variation and evolution of satellite RNA could be hopefully studied through combination directed evolution by DNA shuffling with pseudo-recombination in vitro.[Abstract] [Full Text] [Related] [New Search]