These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Removing low ppb level perchlorate, RDX, and HMX from groundwater with cetyltrimethylammonium chloride (CTAC) pre-loaded activated carbon.
    Author: Parette R, Cannon FS, Weeks K.
    Journal: Water Res; 2005 Nov; 39(19):4683-92. PubMed ID: 16246394.
    Abstract:
    Perchlorate contaminates vast amounts of groundwater throughout the United States which could potentially be used as potable water. Activated carbon pre-loaded with cetyltrimethylammonium chloride has been shown in this research to be an effective adsorbent for removing perchlorate from three low conductivity (50-66 microS/cm) groundwaters containing perchlorate (ClO(4)(-)) concentrations of 0.85, 1.0, and 5.6 parts per billion (ppb), respectively. In rapid small-scale column tests (RSSCTs), the virgin granular activated carbon (GAC) (used as a control) treated between 20,000 and 40,000 bed volumes (BV) of water. In contrast, the activated carbon that was pre-loaded with CTAC processed 170,000-270,000 BV before perchlorate was detected above 0.25 ppb in the effluent. Though this pre-loading significantly increased the capacity for perchlorate, it also diminished the GAC's capacity to remove organics. The groundwater containing 1 ppb ClO(4)(-) also contained the nitro-organics HMX (0.6 ppb) and RDX (5.5-6.6 ppb). RDX was detected in the effluent from the CTAC-pre-loaded bed after only 8000 BV had been processed whereas 308,000 BV could be processed through the virgin bed before RDX was detected. Likewise, HMX breakthrough was observed after 116,000 BV in the CTAC-pre-loaded bed while the virgin RSSCT exhibited no breakthrough of HMX during a test that was operated for 309,000 BV. However, by combining a CTAC-pre-loaded bed followed by a virgin GAC bed in series, both perchlorate and RDX could be removed for the same length of time.
    [Abstract] [Full Text] [Related] [New Search]