These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: TEM-109 (CMT-5), a natural complex mutant of TEM-1 beta-lactamase combining the amino acid substitutions of TEM-6 and TEM-33 (IRT-5). Author: Robin F, Delmas J, Chanal C, Sirot D, Sirot J, Bonnet R. Journal: Antimicrob Agents Chemother; 2005 Nov; 49(11):4443-7. PubMed ID: 16251281. Abstract: Escherichia coli CF349 exhibited a complex beta-lactam resistance phenotype, including resistance to amoxicillin and ticarcillin alone and in combination with clavulanate and to some extended-spectrum cephalosporins. The double-disk synergy test was positive. CF349 harbored an 85-kb conjugative plasmid which encoded a beta-lactamase of pI 5.9. The corresponding bla gene was identified by PCR and sequencing as a bla(TEM) gene. The deduced protein sequence revealed a new complex mutant of TEM-1 beta-lactamase designated TEM-109 (CMT-5). TEM-109 contained both the substitutions Glu104Lys and Arg164His of the expanded-spectrum beta-lactamase (ESBL) TEM-6 and Met69Leu of the inhibitor-resistant TEM-33 (IRT-5). TEM-109 exhibited hydrolytic activity against ceftazidime similar to that of TEM-6 (k(cat), 56 s(-1) and 105 s(-1), respectively; K(m) values, 226 and 247 microM, respectively). The 50% inhibitory concentrations of clavulanate and tazobactam (0.13 microM and 0.27 microM, respectively) were 5- to 10-fold higher for TEM-109 than for TEM-6 (0.01 and 0.06 microM, respectively) but were almost 10-fold lower than those for TEM-33. The characterization of this novel CMT, which exhibits a low level of resistance to inhibitors, highlights the emergence of this new ESBL type.[Abstract] [Full Text] [Related] [New Search]