These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Susceptibility of signal transducer and activator of transcription-1-deficient mice to pulmonary fibrogenesis. Author: Walters DM, Antao-Menezes A, Ingram JL, Rice AB, Nyska A, Tani Y, Kleeberger SR, Bonner JC. Journal: Am J Pathol; 2005 Nov; 167(5):1221-9. PubMed ID: 16251407. Abstract: The signal transducer and activator of transcription (Stat)-1 mediates growth arrest and apoptosis. We postulated that lung fibrosis characterized by excessive proliferation of lung fibroblasts would be enhanced in Stat1-deficient (Stat1-/-) mice. Two weeks after bleomycin aspiration (3 U/kg), Stat1-/- mice exhibited a more severe fibroproliferative response and significantly elevated total lung collagen compared to wild-type mice. Growth factors [epidermal growth factor (EGF) or platelet-derived growth factor (PDGF)] enhanced [3H]thymidine uptake in lung fibroblasts isolated from Stat1-/- mice compared to wild-type mice. Interferon (IFN)-gamma, which signals growth arrest via Stat1, inhibited EGF- or PDGF-stimulated mitogenesis in wild-type fibroblasts but enhanced [3H]thymidine uptake in Stat1-/- fibroblasts. Moreover, IFN-gamma treatment in the absence of growth factors induced a concentration-dependent increase in [3H]thymidine uptake in Stat1-/- but not wild-type fibroblasts. Mitogen-activated protein kinase (ERK-1/2) phosphorylation in response to PDGF or EGF did not differ among Stat1-/- and wild-type fibroblasts. However, Stat3 phosphorylation induced by PDGF, EGF, or IFN-gamma increased twofold in Stat1-/- fibroblasts compared to wild-type fibroblasts. Our findings indicate that Stat1-/- mice are more susceptible to bleomycin-induced lung fibrosis than wild-type mice due to 1) enhanced fibroblast proliferation in response to growth factors (EGF and PDGF), 2) stimulation of fibroblast growth by a Stat1-independent IFN-gamma signaling pathway, and 3) increased activation of Stat3.[Abstract] [Full Text] [Related] [New Search]