These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of holmium:YAG laser pulse width on lithotripsy retropulsion in vitro.
    Author: Finley DS, Petersen J, Abdelshehid C, Ahlering M, Chou D, Borin J, Eichel L, McDougall E, Clayman RV.
    Journal: J Endourol; 2005 Oct; 19(8):1041-4. PubMed ID: 16253078.
    Abstract:
    BACKGROUND AND PURPOSE: The effect of laser pulse width on calculus retropulsion during ureteroscopic lithotripsy is poorly defined because of the limited availability of variable pulse-width lasers. We used an adjustable pulse-width Ho:YAG laser to test the effect of pulse width on in vitro phantom-stone retropulsion and fragmentation efficiency. METHODS AND MATERIALS: An Odyssey 30 Ho:YAG laser (Convergent Laser Technologies, Oakland, CA) with adjustable pulse width (350 or 700 microsec) was used to treat spherical 10-mm plaster calculi in a model ureter (N = 40) and calix (N = 16) utilizing 200- and 400-microm fibers (10 Hz, 1.0 J). Calculi were placed in a waterfilled clear polymer tube, and laser energy was applied continuously in near contact until the stone had moved 8 cm. The time (seconds) and energy (joules) needed to cause the stone to traverse this distance was recorded. Stones were also placed in a stainless-steel mesh calix model in which retropulsion was limited. Laser energy was applied for 5 minutes at each pulse width. A laser-energy meter (Molectron Detector Inc, Portland OR) was used to quantify fiber transmission efficiency after 1 minute of continuous lithotripsy for each fiber at each pulse width. RESULTS: Retropulsion was greater for stones treated at 350 microsec, indicated by a shorter time to traverse the model ureter. For the 200-microrm fiber at 350 microrsec, the average time was 11.5 seconds v 20.3 seconds at 700 microsec (P < 0.001). The average total energy delivered was 114.9 J at 350 microsec v 199.8 J at 700 microsec (P < 0.001). For the 400-microm fiber at 350 microsec, the average time was 5.8 seconds v 11.9 seconds at 700 microsec (P < 0.001). The average total energy was 57.1 J at 350 microsec v 127.3 J at 700 microsec (P < 0.001). In the caliceal model, at 350 and 700 microsec with the 200- and 400-microm fibers, mass loss was 34.9% and 33.4% (P = 0.8) and 14.6% and 21.6% (P = 0.04), respectively. The reduction in energy transmission at 350 microsec and 700 microsec with the 200- microm fiber after 60 seconds of continuous lasing was 8.82% v 9%, respectively (P = 0.95). For the 400-microm fiber, the transmission loss was 18.4% at 350 microsec v 4.4% at 700 microsec (P = 0.0002). CONCLUSION: When treating ureteral calculi, retropulsion can be reduced by using a longer pulse width without compromising fragmentation efficiency. For caliceal calculi, the longer pulse width in combination with a 400-microm fiber provides more effective stone fragmentation.
    [Abstract] [Full Text] [Related] [New Search]