These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of ischemic preconditioning on cerebral blood flow after subsequent lethal ischemia in gerbils.
    Author: Nakamura H, Katsumata T, Nishiyama Y, Otori T, Katsura K, Katayama Y.
    Journal: Life Sci; 2006 Mar 06; 78(15):1713-9. PubMed ID: 16253278.
    Abstract:
    Ischemic tolerance, the phenomenon where a sublethal ischemic preconditioning protects the brain against a subsequent lethal ischemia, has been widely studied. Studies have been done on cerebral blood flow levels prior to the lethal ischemia, but the hemodynamic pattern after global ischemia with ischemic preconditioning has not been reported. Sequential changes in regional cerebral blood flow (rCBF) in gerbil hippocampus after 5 min global ischemia with or without 2 min ischemic preconditioning were studied to determine if ischemic preconditioning affects rCBF. Four different treatments were given: (1) sham-operated, (2) 2 min ischemia, (3) non-preconditioned, and (4) preconditioned. Groups (1) and (2) (both groups n = 5) were given a 24-h recovery period and the rCBF was measured for baseline values. 24 h after sham-operation (3) and 2 min ischemia (4), gerbils were subjected to 5 min ischemia followed by 1 h, 6 h, 1-day or 7-day reperfusion periods (all groups n = 5). Although no regional difference was observed in the recovery pattern of rCBF, the values of rCBF were significantly higher in the preconditioned group throughout whole brain regions including hippocampus. These results indicate that ischemic preconditioning facilitated the recovery of rCBF after 5 min global ischemia. It needs further study to determine whether the protecting effects of preconditioning relate to the early recovery of rCBF or not. However, our results could be interpreted that the early recovery of rCBF may lead to benefits for cell survival in the CA1 neuron, probably facilitating other protecting mechanisms.
    [Abstract] [Full Text] [Related] [New Search]