These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mice over-expressing the 5-HT(1A) receptor in cortex and dentate gyrus display exaggerated locomotor and hypothermic response to 8-OH-DPAT. Author: Bert B, Fink H, Hörtnagl H, Veh RW, Davies B, Theuring F, Kusserow H. Journal: Behav Brain Res; 2006 Feb 28; 167(2):328-41. PubMed ID: 16256213. Abstract: The serotonin 1A (5-HT(1A)) receptor is one of the best described receptor subtypes of the serotonergic system. Due to the complex distribution pattern, the pre- and postsynaptic localisation, the impact on various monoamines, as well as the influence on a wide range of physiological functions, the contribution of 5-HT(1A) receptors to behavioural outcomes is difficult to define. In this study, we present a new transgenic mouse model with a prominent over-expression of the 5-HT(1A) receptor in the outer cortical layers (I-III) and the dentate gyrus. Behavioural studies revealed a slight decrease in baseline motor activity of homozygous mice during the open field test. Moreover, core body temperature of male transgenic mice was significantly lower than that of wild-type mice. Pharmacological studies with the 5-HT(1A) receptor agonist 8-OH-DPAT (0.1-2.5 mg/kg, i.p.) revealed an exaggerated drug response in mutant mice. 8-OH-DPAT led to a drastic decrease in motor activity in the open field and elevated plus maze test. This significant effect on motor activity became more apparent by investigating the serotonergic syndrome induced by 8-OH-DPAT. Concentration as low as 0.5 mg/kg 8-OH-DPAT caused immobility in transgenic mice for 30 min, head weaving behaviour, and backward walking, whereas in wild-type animals, typical behaviours of the serotonin syndrome were first observed at concentrations of 1.5 mg/kg and more. In addition, the 8-OH-DPAT induced hypothermia was more pronounced in mutant mice than in wild-type animals. Therefore, these genetically modified mice represent a promising model for further investigations of the role of 5-HT(1A) receptors.[Abstract] [Full Text] [Related] [New Search]