These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Small non-coding RNAs in Archaea.
    Author: Dennis PP, Omer A.
    Journal: Curr Opin Microbiol; 2005 Dec; 8(6):685-94. PubMed ID: 16256421.
    Abstract:
    Biochemical and informatics analyses conducted over the past few years have revealed the presence of a plethora of small non-coding RNAs in various species of Archaea. A large proportion of these RNAs contain a common structural motif called the RNA kink turn (K-turn). The best-characterized are the C/D box and the H/ACA box guide small (s)RNAs. Both contain the K-turn fold and require the binding of the L7Ae protein to stabilize the structure of this crucial motif. These sRNAs assemble with L7Ae and several other proteins into complex and dynamic ribonucleoprotein machines that mediate guide-directed ribose methylation or pseudouridylation to specific locations in ribosomal or transfer RNA. Analyses of new archaeal sRNA libraries have identified additional classes of novel sRNAs; many of these contain the RNA K-turn motif and suggest that the RNAs might function as ribonucleoprotein complexes. Some have characteristics of small interfering RNAs or of micro RNAs that have been implicated in the post-transcriptional control of gene expression, whereas others appear to be involved in protein translocation or in ribosomal RNA processing and ribosome assembly. A complete understanding of the structure of the K-turn motif and its contribution to various RNA-RNA and RNA-protein interactions will be absolutely essential to fully elucidate the biological organization, activity and function of these novel archaeal ribonucleoprotein machines.
    [Abstract] [Full Text] [Related] [New Search]