These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evidence for developmental changes in the visual word processing network beyond adolescence.
    Author: Brem S, Bucher K, Halder P, Summers P, Dietrich T, Martin E, Brandeis D.
    Journal: Neuroimage; 2006 Feb 01; 29(3):822-37. PubMed ID: 16257546.
    Abstract:
    Late development of specialization in the visual word processing system was examined using event-related potentials (ERP) and functional magnetic resonance imaging (fMRI) of word and symbol string processing in groups of adolescents (15.2-17.3 years) and adults (19.8-30.8 years). We focused our ERP analyses on fast visual activity: the occipital P1 (82-131 ms) modulated by physical stimulus characteristics and the occipito-temporal N1 (132-256 ms) reflecting visual tuning for print. Our fMRI analyses concentrated on basal occipito-temporal activations in the visual word form area VWFA. For words, the correlation of fMRI activation in the VWFA and N1 amplitude confirmed the close relationship of the electrophysiological N1 with metabolic activity in the VWFA. Further support for this relationship came from low resolution electromagnetic tomography localizing the word-specific N1 near the VWFA. Both imaging techniques revealed age-independent differences between words and symbol strings. Late development, however, was preferentially detected with ERPs. Decreases of P1 and N1 amplitudes with age were not limited to words and suggested further maturation of the underlying brain microstructure and function. Following adolescence, decreasing N1 latencies specific to words point to continued specialization of the visual word processing system. Both N1 and fMRI measures correlated with reading performance. In summary, the similarity of global fMRI activation patterns between groups suggests a fully established distribution of the reading network in adolescence, while the decreasing N1 latencies for words indicate protracted fine tuning after adolescence.
    [Abstract] [Full Text] [Related] [New Search]