These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Functional analysis of the bacteriophage T4 DNA-packaging ATPase motor. Author: Mitchell MS, Rao VB. Journal: J Biol Chem; 2006 Jan 06; 281(1):518-27. PubMed ID: 16258174. Abstract: Packaging of double-stranded DNA into bacteriophage capsids is driven by one of the most powerful force-generating motors reported to date. The phage T4 motor is constituted by gene product 16 (gp16) (18 kDa; small terminase), gp17 (70 kDa; large terminase), and gp20 (61 kDa; dodecameric portal). Extensive sequence alignments revealed that numerous phage and viral large terminases encode a common Walker-B motif in the N-terminal ATPase domain. The gp17 motif consists of a highly conserved aspartate (Asp255) preceded by four hydrophobic residues (251MIYI254), which are predicted to form a beta-strand. Combinatorial mutagenesis demonstrated that mutations that compromised hydrophobicity, or integrity of the beta-strand, resulted in a null phenotype, whereas certain changes in hydrophobicity resulted in cs/ts phenotypes. No substitutions, including a highly conservative glutamate, are tolerated at the conserved aspartate. Biochemical analyses revealed that the Asp255 mutants showed no detectable in vitro DNA packaging activity. The purified D255E, D255N, D255T, D255V, and D255E/E256D mutant proteins exhibited defective ATP binding and very low or no gp16-stimulated ATPase activity. The nuclease activity of gp17 is, however, retained, albeit at a greatly reduced level. These data define the N-terminal ATPase center in terminases and show for the first time that subtle defects in the ATP-Mg complex formation at this center lead to a profound loss of phage DNA packaging.[Abstract] [Full Text] [Related] [New Search]