These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different types of hydrogen bonds in 2-substituted pyrroles and 1-vinyl pyrroles as monitored by (1)H, (13)C and (15)N NMR spectroscopy and ab initio calculations. Author: Afonin AV, Ushakov IA, Sobenina LN, Stepanova ZV, Petrova OV, Trofimov BA. Journal: Magn Reson Chem; 2006 Jan; 44(1):59-65. PubMed ID: 16259054. Abstract: According to the (1)H, (13)C and (15)N NMR spectroscopic data and ab initio calculations, the strong N--H...O intramolecular hydrogen bond in the Z-isomers of 2-(2-acylethenyl)pyrroles causes the decrease in the absolute size of the (1)J(N,H) coupling constant by 2 Hz in CDCl(3) and by 4.5 Hz in DMSO-d(6), the deshielding of the proton and nitrogen by 5-6 and 15 ppm, respectively, and the lengthening of the N--H link by 0.025 A. The N--H...N intramolecular hydrogen bond in the 2(2'-pyridyl)pyrrole leads to the increase of the (1)J(N,H) coupling constant by 3 Hz, the deshielding of the proton by 1.5 ppm and the lengthening of the N--H link by 0.004 A. The C--H...N intramolecular hydrogen bond in the 1-vinyl-2-(2'-pyridyl)-pyrrole results in the increase of the (1)J(C,H) coupling constant by 5 Hz, the deshielding of the proton by 1 ppm and the shortening of the C--H link by 0.003 A. Different behavior of the coupling constants and length of the covalent links under the hydrogen bond influence originate from the different nature of the hydrogen bonding (predominantly covalent or electrostatic), which depends in turn on the geometry of the hydrogen bridge. The Fermi-contact mechanism only is responsible for the increase of the coupling constant in the case of the predominantly electrostatic hydrogen bonding, whereas both Fermi-contact and paramagnetic spin-orbital mechanisms bring about the decrease of coupling constant in the case of the predominantly covalent hydrogen bonding.[Abstract] [Full Text] [Related] [New Search]