These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution of reference frames for movement planning in peripersonal space representation.
    Author: Ghafouri M, Lestienne FG.
    Journal: Exp Brain Res; 2006 Feb; 169(1):24-36. PubMed ID: 16261340.
    Abstract:
    The principal goal of our study is to gain an insight into the representation of peripersonal space. Two different experiments were conducted in this study. In the first experiment, subjects were asked to represent principal anatomical reference planes by drawing ellipses in the sagittal, frontal and horizontal planes. The three-dimensional hand-drawing movements, which were achieved with and without visual guidance, were considered as the expression of a cognitive process per se: the peripersonal space representation for action. We measured errors in the spatial orientation of ellipses with regard to the requested reference planes. For ellipses drawn without visual guidance, with eyes open and eyes closed, orientation errors were related to the reference planes. Errors were minimal for sagittal and maximal for horizontal plane. These disparities in errors were considerably reduced when subjects drew using a visual guide. These findings imply that different planes are centrally represented, and are characterized, by different errors when subjects use a body-centered frame for performing the movement and suggest that the representation of peripersonal space may be anisotropic. However, this representation can be modified when subjects use an environment-centered reference frame to produce the movement. In the second experiment, subjects were instructed to represent, with eyes open and eyes closed, sagittal, frontal and horizontal planes by pointing to virtual targets located in these planes. Disparities in orientation errors measured for pointing were similar to those found for drawing, implying that the sensorimotor representation of reference planes was not constrained by the type of motor tasks. Moreover, arm postures measured at pointing endpoints and at comparable spatial locations in drawing are strongly correlated. These results suggest that similar patterns of errors and arm posture correlation, for drawing and pointing, can be the consequence of using a common space representation and reference frame. These findings are consistent with the assumption of an anisotropic action-related representation of peripersonal space when the movement is performed in a body-centered frame.
    [Abstract] [Full Text] [Related] [New Search]