These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different expression and activity of the alpha1 and alpha4 isoforms of the Na,K-ATPase during rat male germ cell ontogeny. Author: Wagoner K, Sanchez G, Nguyen AN, Enders GC, Blanco G. Journal: Reproduction; 2005 Nov; 130(5):627-41. PubMed ID: 16264093. Abstract: Two catalytic isoforms of the Na,K-ATPase, alpha1 and alpha4, are present in testis. While alpha1 is ubiquitously expressed in tissues, alpha4 predominates in male germ cells. Each isoform has distinct enzymatic properties and appears to play specific roles. To gain insight into the relevance of the Na,K-ATPase alpha isoforms in male germ cell biology, we have studied the expression and activity of alpha1 and alpha4 during spermatogenesis and epididymal maturation. This was explored in rat testes at different ages, in isolated spermatogenic cells and in spermatozoa from the caput and caudal regions of the epididymis. Our results show that alpha1 and alpha4 undergo differential regulation during development. Whereas alpha1 exhibits only modest changes, alpha4 increases with gamete differentiation. The most drastic changes for alpha4 take place in spermatocytes at the mRNA level, and with the transition of round spermatids into spermatozoa for expression and activity of the protein. No further changes are detected during transit of spermatozoa through the epididymis. In addition, the cellular distribution of alpha4 is modified with development, being diffusely expressed at the plasma membrane and intracellular compartments of immature cells, finally to localize to the midregion of the spermatozoon flagellum. In contrast, the alpha1 isoform is evenly present along the plasma membrane of the developing and mature gametes. In conclusion, the Na,K-ATPase alpha1 and alpha4 isoforms are functional in diploid, meiotic and haploid male germ cells, alpha4 being significantly upregulated during spermatogenesis. These results support the importance of alpha4 in male gamete differentiation and function.[Abstract] [Full Text] [Related] [New Search]