These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peroxisome proliferator-activated receptor-gamma transcriptionally up-regulates hormone-sensitive lipase via the involvement of specificity protein-1. Author: Deng T, Shan S, Li PP, Shen ZF, Lu XP, Cheng J, Ning ZQ. Journal: Endocrinology; 2006 Feb; 147(2):875-84. PubMed ID: 16269451. Abstract: Both peroxisome proliferator-activated receptor (PPAR)-gamma and hormone-sensitive lipase (HSL) play important roles in lipid metabolism and insulin sensitivity. We demonstrate that expression of the HSL gene is up-regulated by PPARgamma and PPARgamma agonists (rosiglitazone and pioglitazone) in the cultured hepatic cells and differentiating preadipocytes. Rosiglitazone treatment also results in up-regulation of the HSL gene in liver and skeleton muscle from an experimental obese rat model, accompanied by the decreased triglyceride content in these tissues. The proximal promoter (-87 bp of the human HSL gene) was found to be essential for PPARgamma-mediated transactivating activity. This important promoter region contains two GC-boxes and binds the transcription factor specificity protein-1 (Sp1) but not PPARgamma. The Sp1-promoter binding activity can be endogenously enhanced by PPARgamma and rosiglitazone, as demonstrated by analysis of EMSA and chromatin immunoprecipitation assay. Mutations in the GC-box sequences reduce the promoter binding activity of Sp1 and the transactivating activity of PPARgamma. In addition, mithramycin A, the specific inhibitor for Sp1-DNA binding activity, abolishes the PPARgamma-mediated up-regulation of HSL. These results indicate that PPARgamma positively regulates the HSL gene expression, and up-regulation of HSL by PPARgamma requires the involvement of Sp1. Taken together, this study suggests that HSL may be a newly identified PPARgamma target gene, and up-regulation of HSL may be an important mechanism involved in action of PPARgamma agonists in type 2 diabetes.[Abstract] [Full Text] [Related] [New Search]