These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Author: Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM. Journal: Circ Res; 2005 Dec 09; 97(12):1314-22. PubMed ID: 16269653. Abstract: Abnormal release of Ca from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction and arrhythmogenesis in heart failure (HF). We previously demonstrated decreased Ca transient amplitude and SR Ca load associated with increased Na/Ca exchanger expression and enhanced diastolic SR Ca leak in an arrhythmogenic rabbit model of nonischemic HF. Here we assessed expression and phosphorylation status of key Ca handling proteins and measured SR Ca leak in control and HF rabbit myocytes. With HF, expression of RyR2 and FK-506 binding protein 12.6 (FKBP12.6) were reduced, whereas inositol trisphosphate receptor (type 2) and Ca/calmodulin-dependent protein kinase II (CaMKII) expression were increased 50% to 100%. The RyR2 complex included more CaMKII (which was more activated) but less calmodulin, FKBP12.6, and phosphatases 1 and 2A. The RyR2 was more highly phosphorylated by both protein kinase A (PKA) and CaMKII. Total phospholamban phosphorylation was unaltered, although it was reduced at the PKA site and increased at the CaMKII site. SR Ca leak in intact HF myocytes (which is higher than in control) was reduced by inhibition of CaMKII but was unaltered by PKA inhibition. CaMKII inhibition also increased SR Ca content in HF myocytes. Our results suggest that CaMKII-dependent phosphorylation of RyR2 is involved in enhanced SR diastolic Ca leak and reduced SR Ca load in HF, and may thus contribute to arrhythmias and contractile dysfunction in HF.[Abstract] [Full Text] [Related] [New Search]