These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular events mediating insulin-like growth factor I-induced oligodendrocyte development: modulation by cyclic AMP.
    Author: Palacios N, Sánchez-Franco F, Fernández M, Sánchez I, Cacicedo L.
    Journal: J Neurochem; 2005 Nov; 95(4):1091-107. PubMed ID: 16271046.
    Abstract:
    Insulin-like growth factor I (IGF-I) is a potent inducer of oligodendrocyte development and myelination. Although IGF-I intracellular signaling has been well described in several cell types, intracellular mechanisms for IGF-I-induced oligodendrocyte development have not been defined. By using specific inhibitors of intracellular signaling pathways, we report here that the MAPK and phosphatidylinositol 3-kinase signaling pathways are required for the full effect of IGF-I on oligodendrocyte development in primary mixed rat cerebrocortical cell cultures. The MAPK activation, but not the phosphatidylinositol 3-kinase activation, leads to phosphorylation of the cAMP response element-binding protein, which is necessary for IGF-I to induce oligodendrocyte development. cAMP, although it does not show any effect on oligodendrocyte development, has an inhibitory effect on IGF-I-induced oligodendrocyte development that is mediated by the cAMP-dependent protein kinase. Furthermore, cAMP also has an inhibitory effect on IGF-I-dependent MAPK activation. This is a cAMP-dependent protein kinase-independent effect and probably contributes to the cAMP action on IGF-I-induced oligodendrocyte development.
    [Abstract] [Full Text] [Related] [New Search]