These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Presynaptic UNC-31 (CAPS) is required to activate the G alpha(s) pathway of the Caenorhabditis elegans synaptic signaling network. Author: Charlie NK, Schade MA, Thomure AM, Miller KG. Journal: Genetics; 2006 Feb; 172(2):943-61. PubMed ID: 16272411. Abstract: C. elegans mutants lacking the dense-core vesicle priming protein UNC-31 (CAPS) share highly similar phenotypes with mutants lacking a neuronal G alpha(s) pathway, including strong paralysis despite exhibiting near normal levels of steady-state acetylcholine release as indicated by drug sensitivity assays. Our genetic analysis shows that UNC-31 and neuronal G alpha(s) are different parts of the same pathway and that the UNC-31/G alpha(s) pathway is functionally distinct from the presynaptic G alpha(q) pathway with which it interacts. UNC-31 acts upstream of G alpha(s) because mutations that activate the G alpha(s) pathway confer similar levels of strongly hyperactive, coordinated locomotion in both unc-31 null and (+) backgrounds. Using cell-specific promoters, we show that both UNC-31 and the G alpha(s) pathway function in cholinergic motor neurons to regulate locomotion rate. Using immunostaining we show that UNC-31 is often concentrated at or near active zones of cholinergic motor neuron synapses. Our data suggest that presynaptic UNC-31 activity, likely acting via dense-core vesicle exocytosis, is required to locally activate the neuronal G alpha(s) pathway near synaptic active zones.[Abstract] [Full Text] [Related] [New Search]