These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cultured astrocytes from heme oxygenase-1 knockout mice are more vulnerable to heme-mediated oxidative injury. Author: Chen-Roetling J, Benvenisti-Zarom L, Regan RF. Journal: J Neurosci Res; 2005 Dec 15; 82(6):802-10. PubMed ID: 16273550. Abstract: Hemin, the oxidized form of heme, is released from hemoglobin after CNS hemorrhage and may contribute to injury to surrounding tissue. The heme oxygenase (HO) enzymes catalyze the breakdown of hemin to biliverdin, carbon monoxide, and ferric iron. Although HO-2, the isoform expressed predominantly in neurons, accelerates heme-mediated neuronal injury, inhibitor studies suggest that HO-1 induction has a protective effect on astrocytes. In the present study, we directly compared the vulnerability of cultured HO-1 knockout and wild-type astrocytes to hemin. Consistent with prior observations, exposure of wild-type cultures to hemin for 24 hr resulted in protein carbonylation and concentration-dependent cell death between 10 and 60 microM, as determined by MTT and lactate dehydrogenase release assays. In cultures prepared from mice lacking the HO-1 gene, oxidative cell injury was approximately doubled. Both protein oxidation and cell death in HO-1 knockout astrocytes were significantly reduced by pretreating cultures with an adenovirus encoding the HO-1 gene prior to hemin exposure. HO-2 expression was observed in both knockout and wild-type cultures and was not altered by HO-1 gene deletion. Cell hemin accumulation after 20 hr hemin exposure was 4.7-fold higher in knockout cells. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Selectively increasing its expression in astrocytes may be beneficial after hemorrhagic CNS injuries.[Abstract] [Full Text] [Related] [New Search]