These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Scale-up considerations for a hollow-fiber-membrane bioreactor treating trichloroethylene-contaminated water.
    Author: Pressman JG, Georgiou G, Speitel GE.
    Journal: Water Environ Res; 2005; 77(5):533-42. PubMed ID: 16274088.
    Abstract:
    Scale-up of a hollow-fiber-membrane (HFM) bioreactor treating trichloroethylene- (TCE-) contaminated water via co-metabolism with the methanotroph Methylosinus trichosporium OB3b PP358 was investigated through cost comparisons, bioreactor experiments, and mathematical modeling. Cost comparisons, based on a hypothetical treatment scenario of 568-L/min (150-gpm) flowrate with an influent TCE concentration of 100 microg/L, resulted in a configuration of treatment trains with two HFM modules in series and an overall annual cost of US dollar 0.36/m3 treated. Biological experiments were conducted with short lumen and shell residence times, 0.16 and 0.40 min, respectively, as a result of the cost comparisons. A new variable, specific transformation, was defined for characterizing the cometabolic transformation in continuous-flow systems, and values as large as 38.5 microg TCE/mg total suspended solids were sustainable for TCE treatment. Using mathematical modeling, HFM bioreactor system design was investigated, resulting in a five-step system design strategy to facilitate sizing of the unit processes.
    [Abstract] [Full Text] [Related] [New Search]