These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Individual differences in rhythms of behavioral sleep and its neural substrates in Nile grass rats.
    Author: Schwartz MD, Smale L.
    Journal: J Biol Rhythms; 2005 Dec; 20(6):526-37. PubMed ID: 16275771.
    Abstract:
    Laboratory populations of grass rats (Arvicanthis niloticus) housed with a running wheel show considerable variation in patterns of locomotor activity. At the extremes are "day-active" (DA) animals with a monophasic distribution of running throughout the light phase and "night-active" (NA) animals exhibiting a biphasic pattern with an extended peak at the beginning of the dark phase and a brief peak shortly before lights-on. Here, the authors use this intraspecific variation to explore interactions between circadian and homeostatic influences on sleep and the effects of these interactions on the activity of brain regions involved in sleep regulation. Male animals were singly housed with running wheels in a 12:12 LD cycle, videotaped for 24 h, and perfused at ZT 4 or 16. Behavioral sleep was scored from the videotapes, and brains were processed for cFos immunoreactivity (cFos-ir). Sleep duration within the light and dark phases was higher in NA and DA animals, respectively, but these groups did not differ with respect to total sleep. In both groups, sleep bouts were shortest in the light phase and longest between ZT 20 and ZT 23. In the ventrolateral preoptic area (VLPO), cFos-ir was higher at ZT 16 than at ZT 4 in DA but not NA grass rats, and it was correlated with behavioral sleep at ZT 16 but not ZT 4. In OXA neurons, cFos-ir was high at ZT 4 in DA grass rats and at ZT 16 in NA grass rats, and it was correlated with behavioral sleep at both times. In the lower subparaventricular zone (LSPV), cFos-ir was higher at ZT 16 in both DA and NA animals, and it was unrelated to behavioral sleep. Thus, patterns of cFos-ir in the LSPV and OXA neurons were most tightly linked to time and sleep, respectively, whereas cFos-ir in the VLPO was influenced by an interaction between these 2 variables.
    [Abstract] [Full Text] [Related] [New Search]