These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Full-state tracking control of a mobile robot using neural networks. Author: Chaitanya VS. Journal: Int J Neural Syst; 2005 Oct; 15(5):403-14. PubMed ID: 16278944. Abstract: In this paper a nonholonomic mobile robot with completely unknown dynamics is discussed. A mathematical model has been considered and an efficient neural network is developed, which ensures guaranteed tracking performance leading to stability of the system. The neural network assumes a single layer structure, by taking advantage of the robot regressor dynamics that expresses the highly nonlinear robot dynamics in a linear form in terms of the known and unknown robot dynamic parameters. No assumptions relating to the boundedness is placed on the unmodeled disturbances. It is capable of generating real-time smooth and continuous velocity control signals that drive the mobile robot to follow the desired trajectories. The proposed approach resolves speed jump problem existing in some previous tracking controllers. Further, this neural network does not require offline training procedures. Lyapunov theory has been used to prove system stability. The practicality and effectiveness of the proposed tracking controller are demonstrated by simulation and comparison results.[Abstract] [Full Text] [Related] [New Search]