These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Muscular patterns and activation levels of auxiliary breathing muscles and thorax movement in classical singing. Author: Pettersen V. Journal: Folia Phoniatr Logop; 2005; 57(5-6):255-77. PubMed ID: 16280629. Abstract: The aim of this paper is to present an overview of the findings in seven studies exploring muscular patterns and muscle activation levels in selected muscles by classical singers. In addition, the relationship of these muscles to thorax (TX) movement was investigated. Loading levels and respiratory phasing of upper trapezius (TR), sternocleidomastoideus (STM) and the scalenes (SC) were investigated in vocalization tasks with variation in vocal loudness and pitch. Further, muscle activity in the posterior neck (PN) was investigated in inhalation and phonation and, finally, TR, intercostal (INT), lateral abdominal (OBL) and anterior abdominal (RC) muscle loading in student and professional singers was examined. Muscle activity was recorded by use of an ambulatory four-channel monitoring system (Physiometer PHY 400, Premed, Norway). TX movement was traced with two strain gauge sensors (RES-117) placed around the upper TX and lower TX. A phasing of upper TR activity to INT and OBL activity was discovered, all muscles supporting the expiration phase. During phonation, TR contributes in the compression of the upper TX, thus serving as an accessory muscle of expiration. TR activity is reduced with short breathing cycles and is mostly inactive in simplified speaking tasks. During phonation, professional opera singers activate the expiratory-phased TR, INT, OBL and RC muscles to higher levels than student singers do. STM and SC show correlated activity patterns during inhalation and phonation by classical singers. During demanding singing, expiratory-phased STM and SC activity peaks produce a counterforce to the compression of upper TX at high pitches. As breathing demands are lowered, STM and SC activity are reduced and attain inspiratory phasing. Substantial muscle activity is observed in PN during inhalation and phonation. EMG biofeedback performed on TR and STM have a secondary effect of lowering EMG activity in PN.[Abstract] [Full Text] [Related] [New Search]