These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fatty acids, inhibitors for the DNA binding of c-Myc/Max dimer, suppress proliferation and induce apoptosis of differentiated HL-60 human leukemia cell. Author: Jung KC, Park CH, Hwang YH, Rhee HS, Lee JH, Kim HK, Yang CH. Journal: Leukemia; 2006 Jan; 20(1):122-7. PubMed ID: 16281068. Abstract: c-Myc is instrumental in the progression of Burkitt's lymphoma including HL-60 human leukemia cells. We tested fatty acids for their inhibitory effect on the DNA binding of c-Myc/Max dimeric proteins of human origin, prepared as recombinant proteins encompassing DNA binding (basic) and dimerization (HLHZip) domain, and found that those suppress proliferation and induce apoptosis of DMSO-differentiated HL-60 cells. The analyzed IC50 values of myristic acid, stearic acid, gamma-linolenic acid, linoleic acid, linolenic acid and arachidonic acid by EMSA were 97(+/-3), 2.2(+/-1.2), 55(+/-5), 32(+/-2), 62(+/-12), 22(+/-2)microM for DNA binding of recombinant c-Myc/Max, respectively. According to the results shown by XTT assay, their influence on proliferation was quite different from the rank order of IC50. Whereas the degree of influence of the unsaturated fatty acids on the proliferation of DMSO-differentiated HL-60 cells was similar, the influence of saturated fatty acids, stearic acid in particular, was very weak at same concentrations. In addition, we confirmed that these fatty acids have no influence on the expression of c-Myc in DMSO-differentiated HL-60 cells. Our experiments demonstrated that the inhibitors for the DNA binding of c-Myc/Max contribute to the downregulation of Myc-dependent proliferation and to the inducement of apoptosis, and serve as an exploration of potent new inhibitors.[Abstract] [Full Text] [Related] [New Search]