These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Eicosapentaenoic acid ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice: involvement of MCP-1 suppression and decreased ERK1/2 and p38 phosphorylation. Author: Hagiwara S, Makita Y, Gu L, Tanimoto M, Zhang M, Nakamura S, Kaneko S, Itoh T, Gohda T, Horikoshi S, Tomino Y. Journal: Nephrol Dial Transplant; 2006 Mar; 21(3):605-15. PubMed ID: 16282336. Abstract: BACKGROUND: Previous studies reported that eicosapentaenoic acid (EPA) was effective against any renal diseases including diabetic nephropathy. Monocyte chemoattractant protein-1 (MCP-1) is a regulating macrophage recruitment protein, which is up-regulated in patients with diabetic nephropathy. The objectives of the present study were to evaluate the effects of EPA including renal MCP-1 expression in diabetic KKAy/Ta mice, MCP-1 production and signal transduction in mouse mesangial cells (MMCs). METHODS: KKAy/Ta mice were injected with EPA ethyl ester (1 g/kg/day) intraperitoneally. Immunohistochemical staining of MCP-1, F4/80, phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phospho-p38 in the renal sections were performed. EPA or specific inhibitors were incorporated in MMCs, and the levels of supernatant MCP-1 were measured. The effect of EPA on ERK1/2, c-jun NH2-terminal kinase (JNK), p38 or phosphoinositide 3-kinase (PI3K) activity in MMCs was examined using Western blot. RESULTS: EPA decreased the levels of serum triglycerides, leptin, urinary albumin and MCP-1, and improved glucose intolerance, mesangial matrix accumulation and tubulointerstitial fibrosis in KKAy/Ta mice. Immunohistochemical staining of MCP-1 and F4/80 in the glomeruli and tubulointerstitial regions was decreased in the EPA-treated group. EPA and specific inhibitors of ERK1/2, JNK and PI3K decreased levels of MCP-1 in MMCs. EPA suppressed phosphorylation of ERK1/2 and p38 in MMCs, and decreased p-ERK positive cells in glomeruli of KKAy/Ta mice. CONCLUSIONS: EPA ameliorates diabetic nephropathy of type 2 diabetic KKAy/Ta mice. We propose that the observed down-regulation of MCP-1 is critically involved in the beneficial effect of EPA, probably in concert with improvement of other clinical parameters.[Abstract] [Full Text] [Related] [New Search]