These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Author: Pradeep CR, Sunila ES, Kuttan G. Journal: Integr Cancer Ther; 2005 Dec; 4(4):315-21. PubMed ID: 16282508. Abstract: Angiogenesis is a process by which new blood vessels are formed from preexisting vessels. New blood vessel formation by angiogenesis involves the degradation of extra-cellular matrix combined with sprouting and migration of endothelial cells from preexisting capillaries. Solid tumors consist of several components, including normal and stromal cells, extracellular matrix, and vasculature. To grow and metastasize, tumors must stimulate the development of new vasculature through angiogenesis. Vascular endothelial growth factor (VEGF) is a potent angiogenic peptide with biologic effects that include regulation of hematopoietic stem cell development, extracellular matrix remodeling, and inflammatory cytokine regeneration. VEGF is both a vascular growth factor and a vascular permeability factor. Its expression can upregulate several proangiogenic and prometa-static molecules. As a central mediator of angiogenesis, VEGF has emerged as an important target for antiangiogenic therapy. In this review, the authors describe the essential characteristics of VEGF and the VEGF family of ligands and their receptors. They also provide an overview of the central role of VEGF in physiologic and pathologic angiogenesis, directly or indirectly. This review sheds light on the importance of VEGF-targeted antiangiogenic therapy based on the monoclonal antibodies against VEGF, small interfering RNA, and therapy directed against VEGF-VEGFR kinase. It also gives a brief overview of the natural products or dietary compounds that could be used as antiangiogenic agents. Therapeutic inhibition of vessel formation could be best suited to preventive strategies aimed at the suppression of angiogenesis in primary tumors in subjects at risk or of micrometastases after surgical removal of primary tumor.[Abstract] [Full Text] [Related] [New Search]