These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characteristics of (+)-catechin and (-)-epicatechin transport across pig intestinal brush border membranes. Author: Starp C, Alteheld B, Stehle P. Journal: Ann Nutr Metab; 2006; 50(1):59-65. PubMed ID: 16282679. Abstract: BACKGROUND/AIMS: (+)-Catechin and (-)-epicatechin are considered as disease preventive flavan-3-ols of foods like fruits, beverages and chocolate. We investigated mechanisms and kinetics of (+)-catechin and (-)-epicatechin uptake employing a validated in vitro model with isolated pig brush border membrane vesicles. METHODS: Vesicles were isolated from pig small intestine employing the divalent cation method. Characterization (marker enzymes, electron microscopy) confirmed their purity and function. Transport studies with (+)-catechin and (-)-epicatechin under predefined conditions [presence/absence of sodium, pH gradient, temperature (8-37 degrees C), various initial substrate concentrations (2-20 mmol/l)] revealed a measurable transport (HPLC analyses) across the brush border membrane for both substrates. RESULTS: Catechin transport was stimulated by an outwardly directed H(+) gradient (pH(i) 5.5/pH(o) 7.5). The presence of an inwardly directed Na(+) gradient did not result in a transient overshoot in (+)-catechin and (-)-epicatechin uptake. At 37 degrees C, subtraction of diffusion from the total transport rate showed saturation kinetics. CONCLUSION: Our in vitro study indicate that both (+)-catechin and (-)-epicatechin are transported across the basolateral membrane using a dual transport system consisting of free diffusion (dominant at low concentrations) and carrier-mediated facilitated diffusion.[Abstract] [Full Text] [Related] [New Search]