These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Visualization of non-heme ferric and ferrous iron by highly sensitive non-heme iron histochemistry in the stress-induced acute gastric lesions in the rat.
    Author: Asano Y, Meguro R, Odagiri S, Li C, Iwatsuki H, Shoumura K.
    Journal: Histochem Cell Biol; 2006 May; 125(5):515-25. PubMed ID: 16283353.
    Abstract:
    Redox-active non-heme iron catalyzes hydroxyl radical [Formula: see text] generation through Haber-Weiss reaction. Oxidative tissue damage by OH* has been suggested in the development of stress-induced gastric lesion. Using highly sensitive non-heme iron histochemistry, the perfusion-Perls and -Turnbull methods plus DAB intensification, we studied the distribution of non-heme ferric and ferrous iron (NHF[III] and NHF[II]) in the normal stomach and its changes in the acute gastric lesions induced by restraint water immersion (RWI) stress in the rat. Both NHF[III] and NHF[II] staining increased in the oncotic parietal cells located at the erosive lesion which developed on the gastric mucosal folds after 3 h RWI. It was considered that increase in non-heme iron in these cells catalyzed OH* generation under the presence of O(2)(*-) released from abundant injured mitochondria. This was supported by the increase in H(2)O(2) staining in the erosive region and the obvious reduction of the gastric lesion following administration of deferoxamine before RWI. NHF[II] was stained in the arterial endothelium in the tela submucosa of the normal gastric wall and increase in the entire gastric mucosa after 3 h RWI suggests that the changes in the vascular non-heme iron metabolism were also involved in the response of the stomach to stressful conditions.
    [Abstract] [Full Text] [Related] [New Search]