These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Author: Xu J, Lowey J, Wiklund F, Sun J, Lindmark F, Hsu FC, Dimitrov L, Chang B, Turner AR, Liu W, Adami HO, Suh E, Moore JH, Zheng SL, Isaacs WB, Trent JM, Grönberg H. Journal: Cancer Epidemiol Biomarkers Prev; 2005 Nov; 14(11 Pt 1):2563-8. PubMed ID: 16284379. Abstract: It is widely hypothesized that the interactions of multiple genes influence individual risk to prostate cancer. However, current efforts at identifying prostate cancer risk genes primarily rely on single-gene approaches. In an attempt to fill this gap, we carried out a study to explore the joint effect of multiple genes in the inflammation pathway on prostate cancer risk. We studied 20 genes in the Toll-like receptor signaling pathway as well as several cytokines. For each of these genes, we selected and genotyped haplotype-tagging single nucleotide polymorphisms (SNP) among 1,383 cases and 780 controls from the CAPS (CAncer Prostate in Sweden) study population. A total of 57 SNPs were included in the final analysis. A data mining method, multifactor dimensionality reduction, was used to explore the interaction effects of SNPs on prostate cancer risk. Interaction effects were assessed for all possible n SNP combinations, where n = 2, 3, or 4. For each n SNP combination, the model providing lowest prediction error among 100 cross-validations was chosen. The statistical significance levels of the best models in each n SNP combination were determined using permutation tests. A four-SNP interaction (one SNP each from IL-10, IL-1RN, TIRAP, and TLR5) had the lowest prediction error (43.28%, P = 0.019). Our ability to analyze a large number of SNPs in a large sample size is one of the first efforts in exploring the effect of high-order gene-gene interactions on prostate cancer risk, and this is an important contribution to this new and quickly evolving field.[Abstract] [Full Text] [Related] [New Search]