These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions between Caenorhabditis elegans individuals during chemotactic response. Author: Matsuura T, Sato T, Shingai R. Journal: Zoolog Sci; 2005 Oct; 22(10):1095-103. PubMed ID: 16286721. Abstract: The chemotactic response of the nematode Caenorhabditis elegans is known to be affected by the population density on an assay plate, suggesting the existence of interactions between individual animals. To clarify the interactions between individuals during chemotaxis, we investigated the effect of population density at an attractant area on the chemotactic response to water-soluble sodium acetate and odorant diacetyl using wild-type N2 animals and daf-22 (m130) mutants, which have defective pheromone secretion but can sense pheromone. The chemotaxis index of N2 animals at 90 min of the assay negatively correlated with the number of animals on the assay plate regardless of the type of attractant used (p<0.01). On the other hand, there was no significant difference in the chemotaxis indices of daf-22 (m130) mutants for either of the attractants between the low-and high-population groups. When daf-22 (m130) mutants of a high population density were placed at the attractant location in advance, the chemotaxis index of N2 animals was almost the same as that in the control assay in which no animals were placed at the attractant location in advance. When N2 animals of a high population density were placed at the attractant location in advance, the chemotaxis indices of N2 animals and daf-22 (m130) mutants were significantly smaller than those obtained in the control assay (p<0.05). In the absence of an attractant, we observed a decline in the fraction of animals in the neighborhood of N2 animals of a high population density, although the nematodes were not influenced by daf-22 (m130) mutants of a high population density. These results suggest that the attraction of nematodes to chemicals is inhibited by an increase in the concentration of the pheromone generated by N2 animals at the attractant location.[Abstract] [Full Text] [Related] [New Search]