These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heap leaching of Pb and Zn contaminated soil using ozone/UV treatment of EDTA extractants. Author: Finzgar N, Lestan D. Journal: Chemosphere; 2006 Jun; 63(10):1736-43. PubMed ID: 16288797. Abstract: The feasibility of a novel EDTA-based soil heap leaching method with treatment and reuse of extractants in a closed process loop was evaluated on a laboratory scale. Ozone and UV irradiation were used for oxidative decomposition of EDTA-metal complexes in extractants from Pb (1243 mg kg(-1)) and Zn (1190 mg kg(-1)) contaminated soil. Released metals were absorbed in a commercial metal absorbent Slovakite. Six-consecutive additions of 2.5 mmol kg(-1) EDTA (total 15 mmol kg(-1) EDTA) removed 49.6 +/- 0.6% and 19.7 +/- 1.7% of initial total Pb and Zn from soil (4.6 kg) packed in 22 cm high columns. The efficiency of extraction was similar to small-scale simulations of heap leaching (15 0 g of soil), where EDTA used in the same manner removed 49.7 +/- 1.0% and 13.7 +/- 0.4% of Pb and Zn. The new heap leaching method produced discharge extractant with fairly low final concentrations of Pb, Zn and EDTA (1.98 +/- 2.17 mg l(-1), 4.55 +/- 2.36 mg l(-1), and 0.05 +/- 0.04 mM, respectively), which could presumably be reduced even further with continuation of treatment. The results of our study indicate that for soils contaminated primarily with Pb, treating the EDTA extractants with ozone/UV and reuse of extractants enables efficient soil heap leaching with very little or no wastewater generation, easy control over emissions, and lowers the requirements for process water.[Abstract] [Full Text] [Related] [New Search]