These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Organization and properties of a conjugated poly(heteroarylene methines) at the air-water interface and in the Langmuir-Blodgett films. Author: Wu Z, Wu S, Lu Z, Liang Y. Journal: J Colloid Interface Sci; 2002 Jul 01; 251(1):125-30. PubMed ID: 16290710. Abstract: A poly(heteroarylene methine) derivative, poly[(2,5-thiophenediyl) (p-n-methyl, n-octylaminobenzylidene) (2,5-thiophenequinodimethaneiyl)] (PTABQ), has been synthesized and spread at the air-water interface. The influences of three kinds of solutions on PTABQ monolayer behavior at the air-water interface have been investigated via the measurements of the pi-A isotherm and film stability. The results show that all three kinds of PTABQ solutions are apt to form the stable and transferable monolayer film organized with the plane of its pi-system nearly perpendicular to the air-water interface. Moreover, the monolayer-forming ability of PTABQ can be improved by introducing a water-soluble amphiphilie as an extractable spread-aiding component, which is further proved by the AFM images and FTIR spectra of the transferred films. UV-visible absorption spectra indicate that the well-ordered layer-by-layer structure is successfully controlled in the LB films. The optical bandgap of PTABQ is reduced for the ordered arrangement of its molecules in LB films. The intrinsic electrical conductivity of PTABQ LB films is 8.1 x 10(-8) S/cm and the conductivity of iodine-doped films is 5.7 x 10(-7) S/cm.[Abstract] [Full Text] [Related] [New Search]