These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of mitochondrial nitric oxide synthase activity. Author: Ghafourifar P, Asbury ML, Joshi SS, Kincaid ED. Journal: Methods Enzymol; 2005; 396():424-44. PubMed ID: 16291251. Abstract: The main biological targets of nitric oxide (NO) are hemoproteins, thiols, and superoxide anion (O2-). Mitochondria possess several hemoproteins, thiol-containing molecules, and they are one of the prime cellular producers of O2-. Thus, these organelles remain one of the main biological targets for NO. Reports on the existence of a Ca2+-sensitive mitochondrial NO synthase (mtNOS) have opened a new window in the field of NO and mitochondria research (Ghafourifar and Richter, 1997). mtNOS-derived NO reversibly decreases the activity of the mitochondrial hemoprotein, cytochrome c oxidase. This function of mtNOS regulates mitochondrial respiration and transmembrane potential (Deltapsi). The NO generated by mtNOS reacts with mitochondrial thiol-containing proteins including caspase-3. Because the S-nitrosated caspase-3 remains apoptotically silent as long as it is located within the mitochondria, this function of mtNOS portrays an anti-apoptotic property for mtNOS. mtNOS-derived NO also reacts with O2- to generate peroxynitrite. mtNOS-derived peroxynitrite induces oxidative stress and releases cytochrome c from the mitochondria, which represents a pro-apoptotic role for mtNOS. How mitochondria harmonize the reversible functions of mtNOS for mitochondrial respiration, its anti-apoptotic actions via S-nitrosation of caspase-3, versus the pro-apoptotic properties of peroxynitrite remains to be fully understood. However, intramitochondrial ionized Ca2+ concentration ([Ca2+]m) and the status of mitochondrial reducing defense barriers seem to play crucial roles in orchestrating the functions of mtNOS for mitochondria and cells (Ghafourifar and Cadenas, 2005).[Abstract] [Full Text] [Related] [New Search]