These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Study of the hydrophobic cavity of beta-cryptogein through laser-polarized xenon NMR spectroscopy. Author: Berthault P, Huber G, Ha PT, Dubois L, Desvaux H, Guittet E. Journal: Chembiochem; 2006 Jan; 7(1):59-64. PubMed ID: 16292784. Abstract: The interaction of xenon with beta-cryptogein, a basic 10 kDa protein belonging to the elicitin family, has been studied by using dissolved thermal and laser-polarized gas in liquid-state NMR. 13C and 1H chemical-shift-mapping experiments were unfruitful, the proton lines only experienced a slight narrowing but no significant frequency variation when the xenon concentration was increased. Nevertheless magnetization transfer from hyperpolarized xenon to protons of the protein demonstrates an undoubted interaction and enables localization of the noble-gas-binding site. Due to the proton-proton cross-relaxation efficiency, however, this experiment is subjected to important spin-diffusion. An automatic procedure that takes spin-diffusion into account when assigning the protons that interact with xenon is then used. The binding site, as defined by 30 Xe--H interactions, is situated in the inner core of the protein. The protons that interact with xenon border the channel by which sterols are known to enter into the cavity. These results support the idea that xenon is a good probe for hydrophobic protein regions.[Abstract] [Full Text] [Related] [New Search]