These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nuclear targeting of Akt enhances ventricular function and myocyte contractility. Author: Rota M, Boni A, Urbanek K, Padin-Iruegas ME, Kajstura TJ, Fiore G, Kubo H, Sonnenblick EH, Musso E, Houser SR, Leri A, Sussman MA, Anversa P. Journal: Circ Res; 2005 Dec 09; 97(12):1332-41. PubMed ID: 16293788. Abstract: Cytoplasmic overexpression of Akt in the heart results in a myopathy characterized by organ and myocyte hypertrophy. Conversely, nuclear-targeted Akt does not lead to cardiac hypertrophy, but the cellular basis of this distinct heart phenotype remains to be determined. Similarly, whether nuclear-targeted Akt affects ventricular performance and mechanics, calcium metabolism, and electrical properties of myocytes is unknown. Moreover, whether the expression and state of phosphorylation of regulatory proteins implicated in calcium cycling and myocyte contractility are altered in nuclear-targeted Akt has not been established. We report that nuclear overexpression of Akt does not modify cardiac size and shape but results in an increased number of cardiomyocytes, which are smaller in volume. Additionally, the heart possesses enhanced systolic and diastolic function, which is paralleled by increased myocyte performance. Myocyte shortening and velocity of shortening and relengthening are increased in transgenic mice and are coupled with a more efficient reuptake of calcium by the sarcoplasmic reticulum (SR). This process increases calcium loading of the SR during relengthening. The enhanced SR function appears to be mediated by an increase in SR Ca2+-ATPase2a activity sustained by a higher degree of phosphorylation of phospholamban. This posttranslational modification was associated with an increase in phospho-protein kinase A and a decrease in protein phosphatase-1. Together, these observations provide a plausible biochemical mechanism for the potentiation of myocyte and ventricular function in Akt transgenic mice. Therefore, nuclear-targeted Akt in myocytes may have important implications for the diseased heart.[Abstract] [Full Text] [Related] [New Search]