These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Low-dose ouabain protects against excitotoxic apoptosis and up-regulates nuclear Bcl-2 in vivo.
    Author: Golden WC, Martin LJ.
    Journal: Neuroscience; 2006; 137(1):133-44. PubMed ID: 16297565.
    Abstract:
    Sodium-potassium ATPase (Na+,K+-ATPase) regulates the electrochemical gradient in cells, thereby providing fluid and ionic homeostasis. Additionally, interaction of the Na+,K+ pump with cardiac glycosides can activate intracellular signaling cascades (resulting in cell growth) and up-regulate transcription factors that promote cell survival. We used an in vivo excitotoxicity model to assess if Na+,K+-ATPase plays a role in neuronal apoptosis. After unilateral, intrastriatal injection of the glutamate receptor agonist kainic acid into postnatal day 7 rats, Na+,K+ pump function was increased at 12 h after excitotoxic challenge, and levels of neuron-specific enzyme subunits were preserved (up to 24 h after injection) in membrane-enriched striatal fractions. In addition, co-injection of kainic acid with a low-dose (0.01 nmol) of the cardiac glycoside ouabain significantly (P<0.05) reduced striatal apoptosis (at 24 h post-injection) without diminishing Na+,K+-ATPase activity. To evaluate the possible mechanisms for this neuroprotection, we examined the levels of nuclear factor kappa B and Bcl-2 after cardiac glycoside exposure. Low-dose ouabain increased nuclear Bcl-2 (but not nuclear factor kappa B) protein levels at 6 h post injection. Our results suggest that Na+,K+-ATPase allows for progression of apoptosis in excitotoxically-injured neurons, and that sublethal concentrations of ouabain provide neuroprotection against excitotoxicity. The mechanism for this ouabain neuroprotection could be intracellular cascades linked to the Na+,K+-ATPase-ouabain interaction that modulate subcellular Bcl-2 levels. Targeted, therapeutic inhibition of apoptosis through cardiac glycosides may represent an effective strategy against excitotoxicity-mediated neuronal injury.
    [Abstract] [Full Text] [Related] [New Search]