These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles.
    Author: Sawkar AR, Adamski-Werner SL, Cheng WC, Wong CH, Beutler E, Zimmer KP, Kelly JW.
    Journal: Chem Biol; 2005 Nov; 12(11):1235-44. PubMed ID: 16298303.
    Abstract:
    Gaucher disease is a lysosomal storage disorder caused by deficient glucocerebrosidase activity. We have previously shown that the cellular activity of the most common Gaucher disease-associated glucocerebrosidase variant, N370S, is increased when patient-derived cells are cultured with the chemical chaperone N-nonyl-deoxynojirimycin. Chemical chaperones stabilize proteins against misfolding, enabling their trafficking from the endoplasmic reticulum. Herein, the generality of this therapeutic strategy is evaluated with other glucocerebrosidase variants and with additional candidate chemical chaperones. Improved chemical chaperones are identified for N370S glucocerebrosidase. Moreover, we demonstrate that G202R, a glucocerebrosidase variant that is known to be retained in the endoplasmic reticulum, is also amenable to chemical chaperoning. The L444P variant is not chaperoned by any of the active site-directed molecules tested, likely because this mutation destabilizes a domain distinct from the catalytic domain.
    [Abstract] [Full Text] [Related] [New Search]