These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gremlin gene expression in bovine retinal pericytes exposed to elevated glucose.
    Author: Kane R, Stevenson L, Godson C, Stitt AW, O'Brien C.
    Journal: Br J Ophthalmol; 2005 Dec; 89(12):1638-42. PubMed ID: 16299147.
    Abstract:
    AIM: To assess the influence of high extracellular glucose on the expression of the bone morphogenetic protein (BMP) antagonist, gremlin, in cultured bovine retinal pericytes (BRPC). METHODS: BRPC were cultured under conditions of 5 mM and 30 mM d-glucose for 7 days and total RNA was isolated. Gremlin mRNA levels were correlated, by RT-PCR, with other genes implicated in the pathogenesis of diabetic retinopathy and the signalling pathways in high glucose induced gremlin expression were probed using physiological inhibitors. Gremlin expression was also examined in the retina of streptozotocin induced diabetic mice. RESULTS: High glucose stimulated a striking increase in BRPC gremlin mRNA levels in parallel with increases in mRNA for the growth factors vascular endothelial growth factor (VEGF), transforming growth factor beta (TGFbeta), and connective tissue growth factor (CTGF) and changes in other genes including fibronectin and plasminogen activator inhibitor-1 (PAI-1). High glucose triggered gremlin expression was modulated by anti-TGFbeta antibody, by the uncoupler of oxidative phosphorylation, CCCP, and by inhibition of MAP-kinase (MAPK) activation. Striking gremlin expression was observed in the outer retina of diabetic mice and also at the level of the vascular wall. CONCLUSIONS: Gremlin gene expression is induced in BRPC in response to elevated glucose and in the retina of the streptozotocin induced diabetic mouse. Its expression is modulated by hyperglycaemic induction of the MAPK, reactive oxygen species, and TGFbeta pathways, all of which are reported to have a role in diabetic fibrotic disease. This implicates a role for gremlin in the pathogenesis of diabetic retinopathy.
    [Abstract] [Full Text] [Related] [New Search]