These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of TLR-4/MD-2 signaling by RP105/MD-1. Author: Divanovic S, Trompette A, Atabani SF, Madan R, Golenbock DT, Visintin A, Finberg RW, Tarakhovsky A, Vogel SN, Belkaid Y, Kurt-Jones EA, Karp CL. Journal: J Endotoxin Res; 2005; 11(6):363-8. PubMed ID: 16303092. Abstract: Activation of Toll-like receptor (TLR) signaling by microbial and host molecular signatures is critical to the induction of immune responses. Such signaling is, perforce, kept under tight control. We recently discovered a novel endogenous inhibitor of TLR-4 - RP105. Initially identified as a B-cell-specific molecule with a role in B-cell proliferation in response to RP105 mAb and LPS, RP105 is a TLR-4 homologue. Further, like TLR-4 whose surface expression and signaling depends upon co-expression of the secreted protein MD-2, surface expression of RP105 is dependent upon co-expression of the MD2 homologue, MD-1. Unlike the TLRs, however, RP105 lacks a signaling domain, having the apparent structure of a TLR inhibitor. Further, RP105 is not B-cell-specific; its expression directly mirrors that of TLR-4 on dendritic cells and macrophages. These considerations suggested a role for RP105 as a physiological inhibitor of TLR-4 signaling. Indeed, we have recently found that: (i) RP105 is a specific inhibitor of TLR-4 signaling in HEK293 cells; (ii) RP105/MD-1 interacts directly with TLR-4/MD-2, inhibiting the ability of this signaling complex to bind LPS; (iii) RP105 regulates TLR-4 signaling in dendritic cells and macrophages; and (iv) RP105 regulates in vivo responses to LPS.[Abstract] [Full Text] [Related] [New Search]