These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neuroprotective effect of arundic acid, an astrocyte-modulating agent, in mouse brain against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity. Author: Himeda T, Kadoguchi N, Kamiyama Y, Kato H, Maegawa H, Araki T. Journal: Neuropharmacology; 2006 Mar; 50(3):329-44. PubMed ID: 16303147. Abstract: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes the damage of dopaminergic neurons as seen in Parkinson's disease. Oxidative stress has been as one of several pathogenic hypotheses for Parkinson's disease. Here we investigated whether arundic acid, an astrocyte-modulating agent, can protect against alterations of nitric oxide synthase (NOS) and superoxide dismutase (SOD) expression on MPTP neurotoxicity in mice, utilizing an immunohistochemistry. For this purpose, anti-tyrosine hydroxylase (TH) antibody, anti-dopamine transporter (DAT) antibody, anti-Cu/Zn-SOD antibody, anti-Mn-SOD antibody, anti-nNOS antibody, anti-eNOS antibody and anti-iNOS antibody were used. The present study showed that the arundic acid had a protective effect against MPTP-induced neuronal damage in the striatum and substantia nigra of mice. The protective effect may be, at least in part, caused by the reductions of the levels of reactive nitrogen (RNS) and oxygen species (ROS) against MPTP neurotoxicity. These results suggest that the pharmacological modulation of astrocyte may offer a novel therapeutic strategy for the treatment of Parkinson's disease. Furthermore, our results provide further evidence that a combination of nNOS inhibitors, iNOS inhibitors and free radical scavengers may be effective in the treatment of neurodegenerative diseases. Thus our present results provide valuable information for the pathogenesis of degeneration of the nigrostriatal dopaminergic neuronal pathway.[Abstract] [Full Text] [Related] [New Search]