These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of progesterone on the expression of bax and bcl-2 and on caspase activity in bovine luteal cells. Author: Liszewska E, Rekawiecki R, Kotwica J. Journal: Prostaglandins Other Lipid Mediat; 2005 Dec; 78(1-4):67-81. PubMed ID: 16303606. Abstract: Bovine luteal cells from days 6-10 and 11-15 of the estrous cycle were exposed (6 h) to factors that support or disrupt steroidogenesis. The expression of bcl-2 and bax and level of active caspase-3 in cells was measured. Progesterone (P4) increased (P<0.01) while staurosporine decreased (P<0.01-P<0.001) bcl-2 expression at both stages of the estrous cycle studied. In cells from 11-15 days of the estrous cycle expression of bcl-2 was stimulated (P<0.05) by prostaglandin (PG)E2 and inhibited (P<0.01) by 3,3',4,4'-tertrachlorobiphenyl (PCB)-77. Treatment with aminoglutethimide (blocker of cytochrome P450scc; 1.5 x 10(-4)M), nitric oxide donor (spermine NONOate), and staurosporine increased bax expression in cells collected from both experimental periods. The influence of these factors was greater in cells from days 11-15 (P<0.001) than by cells on days 6-10 (P<0.05) of the estrous cycle. PCB-77 stimulated expression of bax in cells from 11-15 days of cycle (P<0.01) only. Treatment of luteal cells with P4 and PGE2 for 24 h decreased (P<0.05) level of active caspase-3 while aminoglutethimide (P<0.05), spermine NONOate (P<0.05), and staurosporine (P<0.001) increased caspase-3 activity in the cells. Moreover, P4 decreased (P<0.05) while staurosporine increased (P<0.01) the ratio of bax/bcl-2 at both stages of the cycle. Aminoglutethimide, spermine NONOate and PCB increased (0<0.05) this ratio in cells on days 11-15 of the cycle. These results suggest that P4 concentrations in luteal cells protects against apoptosis, while disruption of steroidogenesis and reduced ability of luteal cells to produce P4 can induce cell death.[Abstract] [Full Text] [Related] [New Search]