These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A unique activating mutation in JAK2 (V617F) is at the origin of polycythemia vera and allows a new classification of myeloproliferative diseases.
    Author: Vainchenker W, Constantinescu SN.
    Journal: Hematology Am Soc Hematol Educ Program; 2005; ():195-200. PubMed ID: 16304380.
    Abstract:
    Myeloproliferative disorders (MPDs) are heterogeneous diseases that occur at the level of a multipotent hematopoietic stem cell. They are characterized by increased blood cell production related to cytokine hypersensitivity and virtually normal cell maturation. The molecular pathogenesis of the MPDs has been poorly understood, except for chronic myeloid leukemia (CML), where the Bcr-Abl fusion protein exhibits constitutive kinase activity. Since some rare MPDs are also related to a dysregulated kinase activity, a similar mechanism was thought to be likely responsible for the more frequent MPDs. We investigated the mechanisms of endogenous erythroid colony formation (EEC) by polycythemia vera (PV) erythroid progenitor cells and found that EEC formation was abolished by a pharmacological inhibitor of JAK2 as well as an siRNA against JAK2. JAK2 sequencing revealed a unique mutation in the JH2 domain leading to a V617F substitution in more than 80% of the PV samples. This mutation in the pseudokinase autoinhibitory domain results in constitutive kinase activity and induces cytokine hypersensitivity or independence of factor-dependent cell lines. Retroviral transduction of the mutant JAK2 into murine HSC leads to the development of an MPD with polycythemia. The same mutation was found in about 50% of patients with idiopathic myelofibrosis (IMF) and 30% of patients with essential thrombocythemia (ET). Using different approaches, four other teams have obtained similar results. The identification of the JAK2 mutation represents a major advance in our understanding of the molecular pathogenesis of MPDs that will likely permit a new classification of these diseases and the development of novel therapeutic approaches.
    [Abstract] [Full Text] [Related] [New Search]