These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lack of direct DNA damage in human blood leukocytes and lymphocytes after in vitro exposure to high power microwave pulses.
    Author: Chemeris NK, Gapeyev AB, Sirota NP, Gudkova OY, Tankanag AV, Konovalov IV, Buzoverya ME, Suvorov VG, Logunov VA.
    Journal: Bioelectromagnetics; 2006 Apr; 27(3):197-203. PubMed ID: 16304702.
    Abstract:
    Currently, the potential genotoxicity of high power microwave pulses (HPMP) is not clear. Using the alkaline single cell gel electrophoresis assay, also known as the alkaline comet assay, we studied the effects of HPMP (8.8 GHz, 180 ns pulse width, peak power 65 kW, pulse repetition frequency 50 Hz) on DNA of human whole-blood leukocytes and isolated lymphocytes. The cell suspensions were exposed to HPMP for 40 min in a rectangular waveguide. The average SAR calculated from the temperature kinetics was about 1.6 kW/kg (peak SAR was about 300 MW/kg). The steady-state temperature rise in the 50 microl samples exposed to HPMP was 3.5 +/- 0.1 degrees C. In independent experiments, we did not find any statistically significant DNA damage manifested immediately after in vitro HPMP exposure of human blood leukocytes or lymphocytes or after HPMP exposure of leukocytes subsequently incubated at 37 degrees C for 30 min. Our results indicate that HPMP under the given exposure conditions did not induce DNA strand breaks, alkali-labile sites, and incomplete excision repair sites, which could be detected by the alkaline comet assay.
    [Abstract] [Full Text] [Related] [New Search]