These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Author: Kruse O, Rupprecht J, Mussgnug JH, Dismukes GC, Hankamer B. Journal: Photochem Photobiol Sci; 2005 Dec; 4(12):957-70. PubMed ID: 16307108. Abstract: Solar energy capture, conversion into chemical energy and biopolymers by photoautotrophic organisms, is the basis for almost all life on Earth. A broad range of organisms have developed complex molecular machinery for the efficient conversion of sunlight to chemical energy over the past 3 billion years, which to the present day has not been matched by any man-made technologies. Chlorophyll photochemistry within photosystem II (PSII) drives the water-splitting reaction efficiently at room temperature, in contrast with the thermal dissociation reaction that requires a temperature of ca. 1550 K. The successful elucidation of the high-resolution structure of PSII, and in particular the structure of its Mn(4)Ca cluster provides an invaluable blueprint for designing solar powered biotechnologies for the future. This knowledge, combined with new molecular genetic tools, fully sequenced genomes, and an ever increasing knowledge base of physiological processes of oxygenic phototrophs has inspired scientists from many countries to develop new biotechnological strategies to produce renewable CO(2)-neutral energy from sunlight. This review focuses particularly on the potential of use of cyanobacteria and microalgae for biohydrogen production. Specifically this article reviews the predicted size of the global energy market and the constraints of global warming upon it, before detailing the complex set of biochemical pathways that underlie the photosynthetic process and how they could be modified for improved biohydrogen production.[Abstract] [Full Text] [Related] [New Search]