These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thermogenic responsiveness to beta-adrenergic stimulation is augmented in exercising versus sedentary adults: role of oxidative stress.
    Author: Bell C, Stob NR, Seals DR.
    Journal: J Physiol; 2006 Feb 01; 570(Pt 3):629-35. PubMed ID: 16308351.
    Abstract:
    Beta-adrenergic receptor (beta-AR) modulation of resting and postprandial energy expenditure (EE) is augmented in regularly exercising compared with sedentary adults, but the underlying physiological mechanisms are unknown. Differences in thermogenic responsiveness to beta-AR stimulation, perhaps secondary to reactive oxygen species (ROS) bioactivity, may be involved. To determine habitual exercise-related differences in beta-AR thermogenic responsiveness and the possible influence of ROS, we measured the percentage increase in EE (DeltaEE%; indirect calorimetry, ventilated hood method) above resting EE in response to non-specific beta-AR stimulation (intravenous isoproterenol (isoprenaline): 6, 12 and 24 ng (kg fat-free mass)-1 min-1) in 25 sedentary (11 males; 51+/-4 years; body mass index 25.0+/-0.8 kg m-2, maximal oxygen uptake 29+/-1 ml kg-1 min-1 (mean+/-s.e.m.)) and 14 habitually aerobic exercising (9 males, 46+/-6 years, 23.1+/-0.7 kg m-2, 44+/-3 ml kg-1 min-1) healthy adults under normal (control) conditions and during acute intravenous administration of a potent antioxidant, ascorbic acid (vitamin C; 0.04 g (kg fat-free mass)-1). DeltaEE% was greater (P=0.02) in the habitually exercising (8.6+/-1.2, 12.9+/-1.2, 20.0+/-1.4) versus sedentary (6.3+/-0.7, 10.4+/-0.8, 16.0+/-1.0) adults. Ascorbic acid increased (P=0.01) DeltaEE% only in the sedentary adults (to 9.5+/-0.9, 12.4+/-0.7, 18.5+/-0.8), abolishing baseline group differences. DeltaEE% was not related to the amount of body fat, sex, or any other baseline characteristic. Thermogenic responsiveness to beta-AR stimulation is augmented in habitually exercising adults. The mechanism is ascorbic acid dependent, suggesting that it may be linked to decreased ROS bioactivity. Our findings advance a novel mechanism by which habitual physical activity may modulate EE in humans, with potential implications for energy balance and body weight control.
    [Abstract] [Full Text] [Related] [New Search]