These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electronic coupling effects on photoinduced electron transfer in carotene-porphyrin-fullerene triads detected by time-resolved EPR.
    Author: Di Valentin M, Bisol A, Agostini G, Carbonera D.
    Journal: J Chem Inf Model; 2005; 45(6):1580-8. PubMed ID: 16309257.
    Abstract:
    Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C60 (Bahr et al., 2000) have been followed by time-resolved electron paramagnetic resonance. The electron-transfer process has been characterized in a glass of 2-methyltetrahydrofuran and in the nematic phase of two uniaxial liquid crystals (E-7 and ZLI-1167). In all the different media, the molecular triad undergoes two-step photoinduced electron transfer, with the generation of a long-lived charge-separated state (C*+-P-C60*-), and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum. The weak exchange interaction parameter (J = +1.7 +/- 0.1 G) provides a direct measure of the dominant electronic coupling matrix element V between the C*+-P-C60*- radical pair state and the recombination triplet state 3C-P-C60. Comparison of the estimated values of V for this triad and a structurally related triad differing only in the porphyrin bridge (octaalkylporphyrin vs tetraarylporphyrin) explains in terms of an electronic coupling effect the approximately 6-fold variation of the recombination rate induced by the modification of the porphyrin bridge as derived by kinetic experiments (Bahr et al., 2000).
    [Abstract] [Full Text] [Related] [New Search]