These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Prostaglandin E2 deteriorates N-methyl-D-aspartate receptor-mediated cytotoxicity possibly by activating EP2 receptors in cultured cortical neurons.
    Author: Takadera T, Ohyashiki T.
    Journal: Life Sci; 2006 Mar 13; 78(16):1878-83. PubMed ID: 16309709.
    Abstract:
    The activation of glutamate receptors, particularly N-methyl-D-aspartate (NMDA) receptors, initiates ischemic cascade in the early stages of cerebral ischemia. Postischemia, cerebral ischemia is also associated with an inflammatory reaction that contributes to tissue damage. The up-regulation of neuronal cyclooxygenase-2 (COX-2) and elevation of prostaglandin E2 (PGE2) have been reported to occur after cerebral ischemic insult. We therefore studied whether the COX-2 reaction product PGE2 affects glutamate receptor-mediated cell death in cultured rat cortical cells. PGE2 was found to augment NMDA-mediated cell death. The transcription of EP1, EP2, EP3 and EP4 PGE2 receptor genes was investigated using reverse transcriptase-polymerase chain reaction (RT-PCR). EP1, EP2 and EP3 receptor genes were found in cortical cells. Butaprost (an EP2 agonist) markedly enhanced NMDA-mediated cell death, whereas 17-phenyl trinor-PGE2 (an EP1 agonist) and sulprostone (an EP3 agonist) had little effect. Both PGE2 and butaprost elevated cAMP intracellular levels in the cortical cells; moreover, forskolin, an activator of adenylate cyclase, enhanced NMDA-mediated cell death. These results suggest that PGE2, acting via EP2 receptors, aggravates excitotoxic neurodegeneration by a cAMP-dependent mechanism.
    [Abstract] [Full Text] [Related] [New Search]